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Abstract 

Recent literature on log- linear models 
gives the impression that the Interative Pro- 
portional Fitting .(IPF) algorithm yields maxi- 
mum likelihood estimates only for hierarchical 
(not non -hierarchical) models. While it is 
true that hierarchical models are often more 
easily interpreted than non -hierarchical models, 
it is shown here that the IPF algorithm (and 

existing computer programs designed for hier- 
archical models) can be used to estimate any 
non -hierarchical model. This follows directly 
from the symmetry between qualitative /categori- 
cal indicator variables and appropriately 
defined "interaction variables." The general 
approach is illustrated here using data from 
the study of "The American Soldier," Stouffer et 
al. (1949). We also illustrate how a qualita- 
tive analogue to the R2 in quantitative regres- 
sion analysis can be used to partition "qualita- 
tive variance" in 14 logit models . 

Introduction 

In recent years, new statistical methods 
involving log- linear models have become available 
for analyzing the relationships among qualita- 
tive /categorical variables. The approaches 
recommended by Goodman (1970), Bishop (1969), 
Grizzle, Starmer and Koch (1969), Ku and Kull - 
back (1974) and others differ in certain 
respects but they all formulate the same multi- 
plicative analogue to the additive analysis of 
variance (ANOVA) model. The development of 
log- linear models has led to major advances 
in the statistical analysis of qualitative data. 

Some of the recent literature in this area 
conveys the impression that in order to estimate 
non -hierarchical log- linear models (i.e., models 
which hypothesize some higher order interaction 
terms but which exclude certain lower order 
terms) , one must use some algorithm other than 
the Iterative Proportional Fitting (IPF) algo- 
rithm. The Deming- Stephan (1940) IPF algorithm 
is recommended by Bishop (1969) and Goodman 
(1970) for estimating hierarchical models. The 
purpose of this paper is to point out that the 
IPF algorithm can also be used to estimate non- 
hierarchical models. In this paper we illus- 
trate the general estimation approach and also 
recommend the use of a qualitative analogue to 
R2 . 

For concreteness, we use the data from the 
study of "The American Soldier" by Stouffer et 
al. (1949) to motivate the discussion and illus- 
trate the approach. We shave how non- hierarchi- 
cal models which can be transformed into hier- 
archical models as well as non -hierarchical 
models which cannot be transformed into hier- 
archical models can all be estimated using 
Goodman's ECTA computer program, a program 
designed to estimate hierarchical models using 
the IPF algorithm. 
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We will use data from 8,036 soldiers to 
predict (D) Camp Preference (North or South) 
based on knowledge of the three explanatory 
variables (A) Race (Black or White), (B) Region 
of Origin (North or South) and (C) Present Loca- 
tion (North or South). Although this paper is 
limited to a subset of log- linear models (the 

logit model) and involves only four variables 
which are all dichotomous, the logic presented 
here can easily be generalized to log- linear 
models other than logit models involving any 
number of polytomous (not necessarily dichoto- 
mous) variables (see Magidson, 1976). 

We also present a comparison of the likeli- 
hood ratio chi -square, the goodness of fit chi - 
square and the correlation ratio for each of the 
logit models fitted to the data. The two chi - 
square statistics indicate how well a model fits 
the data while the correlation ratio n2 measures 
the proportion of variance explained. Beginning 
with a model of complete independence where 

nD.ABC 0, the correlation ratio steadily 
increases to .35 for the saturated model while 
the corresponding chi -square values steadily 
decline indicating that the models which explain 
the most variance also fit the data best. This 
gives empirical support to the meaningfulness 
of n2, a qualitative analogue to R2 which is 
seldom reported for logit models. 

Preliminary Analysis of the Data 

Table 1 displays the data in the form of a 
2 -way table where the rows are associated with 
the explanatory variables Race, Region of Origin 
and Present Location and the columns refer to the 
levels (categories) of the dependent variable 
Camp Preference. The conditional proportions and 
conditional odds in favor of a northern (and a 

southern) camp preference are also given in this 
table. 

Thus, for example we see that 91.5% of the 
423 black northerners in northern camps prefer a 
northern camp while only 9.5% of the 960 white 
southerners in southern camps prefer a northern 
camp. An equivalent way of looking at these 
figures is in terms of the odds in favor of a 
northern camp. For black northerners in northern 
camps the odds are 387:36 (or 10.75:1) in favor 
of a northern camp preference while the corres- 
ponding odds for white southerners in southern 
camps is 91:869 (or 0.105:1). 

The single best predictor of Camp Preference 
is (B) Region of Origin. This can be seen 
directly from Table 1 by noting that a higher 
proportion of northern-born soldiers prefers the 
north than southern-born soldiers in every case 
regardless of Race and Present Location (i.e., 

even the group of northern-born soldiers least 
likely to prefer the north, is more likely to 
prefer the north than any group of southern-born 
soldiers). Similarly, it is seen that the next 
best predictor is (C) Present Location while the 



weakest predictor is (A) Race. 

The Saturated and Unsaturated Logit Models 

The saturated logit model for predicting 
Camp Preference as a function of (A) Race, (B) 

Region of Origin and (C) Present Location is 

ßACXAC ßBCXBC 

ßABCXABC 
(1) 

where denotes the expected value of the condi- 
tional odds in favor of a northern camp prefer- 
ence and the X's are indicators associated with 
the explanatory variables. The X's are defined 
in Table 2. We will refer to XA, XB, and XC 

as "main variables" and to the other X's as 
"interaction variables." We will also refer to 
the X's as vectors as displayed in Table 2. 

Model 1 is a saturated or full rank model 
because the X- vectors (together with a vector 
of ones) form a basis for the entire 8- dimen- 
sional space. Thus, improved prediction is 
not possible by including additional variables 
into the model because any additional variables 
can be expressed as linear combinations of the 
X's and absorbed into model 1. The basis vec- 
tors are displayed in the form of a design 
matrix in Table 2. It can easily be verified 
that the basis is orthogonal (although the 
estimated ß- parameters will not be orthogonal). 

Unsaturated or restricted mcdels can be 
formed from model 1 by omitting some of the X's 
(i.e., setting some of the ß's to zero). Each 
unsaturated model- therefore corresponds to a 
hypothesis that the vector of expected odds of 
preferring the north is located in the subspace 
spanned by the X- vectors included in the model. 
For example, the main- effects -only model hypo- 
thesizes that the vector of odds is located in 
the subspace spanned by XA, XB and XC (and the 
constant vector). We will now distinguish 
between hierarchical hypotheses (models) and 
non -hierarchical hypotheses (models). 

A model including one or more interaction 
vectors is said to be hierarchical if all 
lower order X- variables having the same super- 
scripts are also included in the model. Thus, 

the model including XBC is hierarchical if it 
also includes XB and XC, otherwise it is non- 
hierarchical. It follows that the saturated 
model is the only hierarchical model containing 
the XABC vector. A model which excludes all 
interaction vectors is also said to be hier- 
archical. Thus, the main -effects -only model is 
hierarchical, the model which includes only 
(and the constant) is hierarchical and the total 
independence model which omits all of the X's is 
also hierarchical. 

Any model which is not hierarchical is said 
to be non -hierarchical. Thus, for example, the 
model wh'Eh omits all X- vectors except for 

and X° is non -hierarchical because it 
excludes XC. 
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Results from 14 Logit Models 

Table 3 summarizes the results for 13 
unsaturated logit models (and the saturated 
model). Models H1 -1 H10 are hierarchical models 

estimated earlier by Goodman (1972a) using the 
ECTA computer program. Models H11-H13 are non- 
hierarchical models also estimated using ECTA. 
Model H0 is the saturated model. 

The main -effects -only model is designated 
as model H2. There are 4 degrees of freedom 

associated with this model corresponding to the 
4 interaction terms omitted. The large chi - 

square value is significant at well beyond the 
.01 leve]. so we reject the main- effects -only 
model in favor of a model postulating inter- 

action. 

Model H fits the data exceptionally well 
as indicated1by a chi -square value of only 1.5 
with 3 degrees of freedom. This parsimonious 
model hypothesizes only one interaction term, 
the (BC) Region of Origin /Present Location term. 
This model is accepted by Goodman (1972a) for 

this data. It states that black soldiers are 
about 2.1 times more likely to prefer the north 
than white soldiers having the same region of 
origin and the same present location. (Since 

there are no interaction terms associated with 
Race in model H1, this number is constant over 
the four joint categories of Region of Origin/ 
Present Location.) 

Table 4 compares the estimates of the 

parameters in model with those of the satura- 
ted model. The estimates are almost identical 
to two decimal places. Notice that the estimated 
parameters associated with the interaction vari- 
ables are smaller in magnitude than those asso- 
ciated with the main variables. Also notice that 

these estimates are consistent with our prelimin- 
ary analysis which concluded that (B) Region of 

Origin was the most important predictor, (C) 

Present Location was next in importance while 
(A) Race was the least important explanatory 
variable for the prediction of (D) Camp Prefer- 

ence as indicated by the correlation ratio. We 

discuss these correlation ratios in more detail 

in a later section. 

The statistical significance of the BC term 
in model H1 can be tested by subtracting the 
likelihood ratio chi -square for model H1 from 

the likelihood ratio chi -square for the main - 

effects -only model H2. This difference is 

asymptotically distributed as a chi -square sta- 
tistic with one degree of freedom under the null 
hypothesis that the main -effects -only model is 
correct (i.e., the null hypothesis is that 
ßBC 0 in model H1). The number of degrees of 

freedom is the difference in degrees of freedom 

between these two models. This difference 
(24.96 - 1.45 = 23.51) is highly significant so 

we reject the null hypothesis (model H2) and 
accept model H1. 

The significance of A in model H1 can be 

similarly tested by subtracting the chi- square 
value for model H1 from the chi -square value for 



the hierarchical model H3. Similarly, the signi- 
ficance of B and C can be tested using the non- 
hierarchical models H11 and H12 respectively. 
All parameter estimates in model H1 are statis- 
tically significant at well beyond the .01 level. 

Model H13 is similar to model H1. The only 
difference is that it includes the highest order 
interaction term ABC instead of the BC term. 
Model H1 fits the data exceptionally well but 
model H13 does not fit well at all. In the next 
section we show that model H13 cannot be trans- 
formed into a hierarchical model by simple trans- 
formations while the other non -hierarchical 
models H11 and H12 can be so transformed. We 
also show how these three non -hierarchical 
models were all estimated using the ECTA computer 
program. 

The proportion of variance explained by 
these 14 logit models is given in the rightmost 

column of Table 3. The correlation ratios are 
discussed in a later section. 

The general approach is to convert any model 
to a main -effects -only model by viewing, all 
variables as main variables whether they are in 
fact main variables or interaction variables. 
This will generally involve inputting a larger 
number of variables into ECTA than is really the 
case and some (or many) of the frequencies will 
be structural zeros. 

For purposes of illustration, let us first 

consider the 4 models H1, H2, H11 and H12. 
These models include only 4 of the X- variables 
in their formulation. They include the depen- 
dent variable D, and the X- variables, XA, 

XC and The coercion approach to estimat- 
ing these models is to input a 5-way table of 
frequencies rather than a 4 -way table despite 
the fact that there are really only the four 
dichotomous variables A, B, C and D. Table 10 

displays the 32 frequencies input for these 
models, 16 of which are structural zeros.3 

Table 11 gives the marginal tables which are 
fit for each of these models based on the input- 
ted frequencies of Table 10. The {BCD} table is 
the 2x2 table which crossclassifies the D dicho- 
tomy with the XBC dichotomy. It is different 
from the 2x2x2 {BCD} table which crossclassifies 
the three dichotomies B, C and D. 

Model H1 can be estimated based on the in- 
putted frequencies given in Table 10 by specify- 
ing that the {B } 3 -way table be fit instead of 

s 

i.ecifyinjthat the three 2 -way tables {BD} , 

CD } , { BCD} be fit. The fact that these 
alternative specifications are equivalent is 

shown in Magidson (1976). 

Model H13 can be estimated in a similar 
fashion by inputting the 32 frequencies given in 
Table 12. Or all 5 unsaturated models can be 
estimated from a single set of frequencies if 
the 64 frequencies (with 48 structural zeros) 
corresponding to the 6 -way table formed by the 
X- variables XBC, and D are 
input. Taking this logic to the extreme, any 
model can be estimated based on an 8 -way table 
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which also includes the and XAC terms. 

Thus, we have shown how any non -hierarchical 
model can be estimated using ECTA, a program 
designed for hierarchical. models. For occasional 
estimation of non- hierarchical models, the ECTA 
program should suffice. For extensive estima- 
tion of non- hierarchical models, ECTA can easily 
be modified to include an option so that one 
need not input any structural zeros. In any 

case, it is the IPF algorithm which can be used 
to calculate ML estimates for the expected 
frequencies under any hierarchical or non-hierar- 
chical model of the kind usually considered.4 
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Footnotes 

1This is an abbreviated version of the original 
paper, prepared especially for these proceed- 
ings. Copies of the complete paper are 
available upon request from the author at 
Abt Associates Inc., 55 Wheeler Street, 
Cambridge, Massachusetts 02138. 

2The number 2.1 is twice the estimate of 
expressed in units of odds. By taking the 

logarithm of 2.1 we convert back to the logit 
formulation where the parameters are expressed 
in logarithms of odds. (See Goodman, 1972b.) 

3ECTA has an option which allows the user to 
specify which frequencies correspond to 
structural zeros. 

4We can conceive of models formed by other kinds 
of restrictions of course, but these other 
models are beyond the scope of this paper. 



Table 1 Cross -classification of Soldiers with Respect to 4 Dichotomized Variables: 
(A) Race, (B) Region of Origin, (C) Location of Present Camp, and 
(D) Preference as to Camp Location 

(B) 

Region of 
Origin 

(C) 

Location 
Present 

Camp 

(A) 

of Race Number of Soldiers Preferring Camp: 

In North In South 
Freq. Prob. Odds Freq. Prob. ,Odds Total 

North North Black 387 .915 10.750 36 .085 0.093 423 

North North White 955 .855 5.895 162 .145 0.170 1117 

North South Black 876 .778 3.504 250 .222 0.285 1126 

North South White 874 .632 1.714 510 .368 0.584 1384 

South North Black 383 .587 1.419 270 .413 0.705 653 

South North White 104 .371 0.591 176 .629 1.692 280 

South South Black 381 .182 0.223 1712 .818 4.493 2093 

South South White 91 .095 0.105 869 .905 9.549 960 

4051 .504 1.017 3985 .496 0.984 8036 

Table 3 The Results from Fourteen Logit Models for the Prediction of 
(D) Location Preference Based On the Explanatory Variables (A) Race, 
(B) Region of Origin and (C) Present Location 

Explanatory Variables Likelihood Goodness Proportion 
Included Degrees Ratio Chi- of Fit of Variance nD.ABC 

Model in the Model of Freedom Square Chi- Square Explained 

H 
0 

ALL (A,B,C,AB,AC,BC,ABC) O .350 

H9 A,B,C,AB,BC 2 0.68 0.69 .349 

H8 A,B,C,AC,BC 2 1.32 1.34 .349 

H1 A,B,C,BC 3 1.45 1.46 .349 

H10 A,B,C,AB,AC 2 17.29 18.73 .347 

H13 A,B,C,ABC 3 24.80 25.48 .345 

82 A,B,C 4 24.96 25.73 .345 

H3 B,C,BC 4 152.65 147.59 .336 

84 B,C 5 186.36 180.26 .329 

H12 A,B,BC 4 674.78 675.74 .285 

116 A,B 5 695.01 727.16 .282 

A,C,BC 4 1604.57 1905.35 .176 

H5 A,C 5 2286.83 2187.71 .099 

H7 NONE 7 3111.47 2812.64 0 



Table 2 The Orthogonal Basis Vectors 
for the Saturated Logit Model 

i constan t 
xA XBC XABC 

1 1 1 +1 +1 +1 +1 +1 +1 +1 +1 

1 1 2 +1 +1 +1 -1 +1 -1 -1 -1 

1 2 1 +1 +1 -1 +1 -1 +1 -1 -1 

1 2 2 +1 +1 -1 -1 -1 -1 +1 +1 

2 1 1 +1 -1 +1 +1 -1 -1 +1 -1 

2 1 2 +1 -1 +1 -1 -1 +1 -1 +1 

2 2 1 +1 -1 -1 +1 +1 -1 -1 +1 

2 2 2 +1 -1 -1 -1 +1 +1 +1 -1 

Table 10 The Frequencies Input to ECTA to 
Estimate Models H1, H2, H11 and 
H12 by the Coercion Approach 

XA XB XC XBC North South 

1 1 1 1 387 36 

1 1 1 -1 

1 1 -1 1 0 0 

1 1 -1 -1 876 250 

1 -1 1 1 0 0 

1 -1 1 -1 383 270 

1 -1 -1 1 381 1,712 

1 -1 -1 -1 0 0 

-1 1 1 1 955 162 

-1 1 1 -1 0 0 

-1 1 -1 1 0 0 

-1 1 -1 -1 874 510 

-1 -1 1 1 0 0 

-1 -1 -1 -1 104 176 

-1 -1 -1 1 91 869 

-1 -1 1 -1 0 0 
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Table 11 Four Logit Models and the Marginal 
Tables Fit in Order to Estimate 
These Models by the Coercion 
Approach Using the Input Data from 
Table 10 

Explanatory 
Variables 

Model Included 

H2 A,B,C 

H1 A,B,C,BC 

H11 A,C,BC 

H12 A,B,BC 

Marginal Tables Fit 

{ABC} , {AD} , {BD} , 

, { AD} , {BD} CD} , { 

or {ABC} ,{AD} ,{BCD} 

{ABC},{AD},{CD},{BCD} 

{ABC},{AD},{BD},{BCD} 

Table 12 The Frequencies Input to ECTA to 
Estimate Model H13 by the Coercion 
Approach 

XA X XABC 
North South 

1 1 1 1 387 36 

1 1 1 -1 0 0 

1 1 -1 1 0 0 

1 1 -1 -1 876 250 

1 -1 1 1 0 0 

1 -1 1 -1 383 270 

1 -1 -1 1 381 1,712 

1 -1 -1 -1 0 0 

-1 1 1 1 0 0 

-1 1 1 -1 955 162 

-1 1 -1 1 874 510 

-1 1 -1 -1 

-1 -1 1 1 104 176 

-1 -1 -1 -1 0 0 

-1 -1 -1 1 0 0 

-1 -1 1 -1 91 869 


